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We study the thermodynamic properties of a simple model for the possible
mechanism of attraction between like charged rod-like polyions inside a
polyelectrolyte solution. We consider two polyions in parallel planes, with Z
charges each, in a solution containing multivalent counterion of valence a. The
model is solved exactly for Z [ 13 for a general angle h between the rods and
supposing that n counterions are condensed onto each polyion. The free energy
has two minima, one at h=0 (parallel rods) and another at h=p/2 (perpen-
dicular rods). The stability of the parallel and perpendicular configurations is
analyzed.

KEY WORDS: Polyelectrolytes; DNA; Manning condensation; like-charge
attraction.

1. INTRODUCTION

It has been observed that the like charged macromolecules can attract each
other in solutions containing multivalent counterions. This attraction
manifests itself in in vitro formation of toroidal bundles of concentrated
DNA, (1, 2) similar to the one found in bacteriophage heads, (3) and the
appearance of rod-like bundles of f-actin and tobacco mosaic virus in the
presence of multivalent counterions. (4) A number of models have been
suggested to explain this curious phenomenon. The fundamental ingredient
in all of these models is the role played by the condensed counterions. (5, 6)



Thus, the attraction has been attributed to the correlations between the
condensed counterions on the two polyions. (7, 8) The mathematical problem
of how these correlations can be taken into account is highly non-trivial.
Two approaches have been proposed. One relies on field theoretic metho-
dology and uses what can be classified as a high temperature expansion to
account for the correlations between the condensed counterions, (7) while
the second is a zero temperature approximation, in which the counterions
are thought to form correlated Wigner crystals on the surfaces of the two
polyions. (8–11) Neither one of the approaches is exact, however, the zero
temperature Wigner crystal approximation is better at capturing the true
nature of correlations. (12, 10)

In earlier work we have introduced a simple model which has allowed
us to study exactly the force between two parallel charged rods with a layer
of condensed counterions. (9) In this paper we shall extend this work to
allow for a relative inclination between the two rods. This problem is of
particular interest in kinetics of the bundle formation, where it has been
observed that the bundles of stiff polyions have a characteristic size. This is
quite surprising since the correlation induced attraction should favor for-
mation of infinitely thick bundles, after all the ionic crystals can grow to
macroscopic sizes. A possible explanation for the bundles not growing
beyond some specific size can be found in the kinematics of bundle forma-
tion. The condensed counterions do not fully neutralize the charge of a
polyion. For a polyion of Z monomers each with charge −q, separated by
a distance b, placed in a solvent with dielectric constant D, in the presence
of counterions of charge aq, the Manning criterion (13) states that the
number of condensed counterions on a polyion is n=(1−1/at) Z/a where
t=q2/DbkBT. Thus, for the case of DNA with divalent counterions, 88%
of the DNA’s charge is neutralized. It is easy to convince oneself that if the
interaction between two rod-like molecules is repulsive, there will be a
greater probability that they will be found perpendicular to one another.
The correlation induced attraction between the DNA molecules is short
ranged. This means that the electrostatic repulsion due to the uncom-
pensated charge is dominant at large distances. Thus, the two polyions will
in general repel one another. It is only when the two macromolecules come
in a close contact that the thermal fluctuations might be able to overcome
the free energy barrier between the perpendicular and the parallel configu-
rations, allowing the correlation induced attraction to take over and the
polyions to ‘‘bundle up.’’ It has been argued that the size of this free energy
barrier scales with the size of the bundle already formed. (14) Thus, there
comes a point when the thermal fluctuations will not be able to overcome
the free energy barrier. Motivated by this discussion we shall now proceed
with the study of interactions between rotating like charged rods.
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2. DEFINITION OF THE MODEL AND ITS SOLUTION

We consider two rod-like polyions, each one with Z monomers of
charge −q separated by distance b, Fig. 1. On each polyion, n a-valent
counterions, with charge aq, are condensed. The sites where the condensed
counterions are located are described by occupation variables sij, such that
sij=1 if a counterion is condensed on the i th monomer (i=1,..., Z) of the
jth polyion (j=1, 2) and sij=0 otherwise. When a counterion is con-
densed on a monomer, we assume that the only effect is the renormaliza-
tion of the local charge, from −q to −q+aq. The rods are located on two
parallel planes separated by a distance d and the line joining the centers of
the rods is supposed to be perpendicular to these planes. The angle between
the directions of the rods is equal to h, so that h=0 corresponds to the
case of parallel rods considered (9) previously. The definitions above are
illustrated in Fig. 1. Notice that, for simplicity, we will consider only odd
values of Z, so that for nonzero values of h the distance between the
central charges of each rod vanishes as dQ 0. The polyions are placed in a
uniform solvent whose dielectric constant is equal to D. For a given con-
figuration {s} of condensed counterions the Hamiltonian for the pair of
polyions may then be written as

H=
q2

2D
C
Z

i, i −=1
C
2

j, j −=1

(1−asij)(1−asi −j −)
bd(i, j, iŒ, jŒ)

, (1)

Fig. 1. Two rod-like polyions with Z=7 charges each.
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where the denominator is the distance between the sites (i, j) and (iŒ, jŒ),
the sum is restricted to (i, j) ] (iŒ, jŒ), and

d(i, j, iŒ, jŒ)=˛ |i− iŒ|, if j=jŒ,

`x2+f2i+f
2
i −−2fifi − cos h, if j ] jŒ;

(2)

with x=d/b and

fi=
Z+1−2i
2

. (3)

The values of occupation variables obey the constraints ;Z
i=1 si1=

;Z
i=1 si2=n.
The partition function of the model is given by

Q=C
{s}

Œ exp(−bH)=C
{s}

Œ exp(−tH), (4)

where the prime denotes the constraint of fixed numbers of condensed
counterions on each polyion. The adimensional reduced Hamiltonian H is
given by

H=
1
2

C
(i, j) ] (i −, j −)

(1−asij)(1−asi −j −)
d(i, j, iŒ, jŒ)

, (5)

and t=bq2/Db is the Manning parameter. (13) For a given counterion con-
figuration {s}, if a transformation s −ij=1−sij is performed, the Hamiltonian
changes as

H(Z, a, n, x, h, {s})=(a−1)2H(Z, aŒ, nŒ, x, h, {sŒ}), (6)

where aŒ=a/(a−1) and nŒ=Z−n. This relation leads to the following
invariance property of the partition function of the model

Q(Z, n, t, a, x, h)=Q(Z, Z−n, [a−1]2 t, a/[a−1], x, h), (7)

and therefore we may restrict ourselves to n < Z/2 in the calculations. The
free energy of the model is f=−kBT ln Q, and the force between the rods
is F=− “f

“d . It is then useful to define an adimensional force as

f=
Db2F
q2
=
1
tQ
“Q
“x
. (8)
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It should be noted that the definition of reduced force f we use here is dif-
ferent from the one used in ref. 9, since the earlier definition diverges at
vanishing temperature. The sign was chosen in such a way that repulsive
forces are positive.

To solve the model exactly, one may define activity variables

yi=exp 5−
t

i
6 , i=1,..., Z−1 (9)

zij=exp 5−
t

dij
6 , i, j=1,..., Z, (10)

where dij=`x2+f
2
i+f

2
iŒ−2fifiŒ cos h. It may then be noticed that the

partition function may be written as

Q=C
Nc

i=1
wi, (11)

where

Nc=5
Z!

n! (Z−n)!
62

is the number of condensed counterions configurations and the statistical
weight of the i th configuration is given by

wi=D
Z−1

j=1
yuijj D

Z

k, l=1
zviklkj , (12)

uij and vikl being quadratic polynomials in a with integer coefficients. It is
possible to generate these sets of integer numbers with a computer program
and thus obtain the partition function of the model exactly. On a conven-
tional personal computer with a rather moderate processing time it is easy
to obtain results up to Z=13, and simulations (9) for larger polyions show
that the qualitative behavior of the model does not change much beyond
this value, so we will restrict ourselves here to Z [ 13.

3. RESULTS FOR THE THERMODYNAMIC BEHAVIOR OF THE

MODEL

The thermodynamic behavior of the model is determined by the free
energy f obtained above. We will start by considering the behavior of f
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Fig. 2. Free energy j as a function of the angle h. Z=9, n=4, a=0.8, t=2. The curves
shown are for: x=2 (——), x=1.3676010335 ( · · · · ), and x=1.3 (– – –). Notice that the free
energies for h=0 and h=p/2 are equal in the second case.

as a function of h. For convenience, we define an adimensional free energy

j=
Db
q2
f=−

1
t
ln Q. (13)

The free energy is a function of the parameters Z, n, t, a, x, and h. For
reasons which will become clear below, we replace the parameter a by

a=
2na
Z
−1, (14)

so that we will consider the free energy j(Z, n, t, a, x, h). In all cases we
noticed that the global minimum of the free energy is located either at the
parallel (h=0) or at the perpendicular (h=p/2) configuration of the rods.
An example of this is shown in Fig. 2, and one may note that, in general,
the parallel configuration is stable for small distance x and the perpendi-
cular one becomes stable as x increases. So, in what follows we will con-
centrate our attention on the parallel and perpendicular rod configurations
only.

We will now focus on the regions of the parameter space where the
parallel and perpendicular configurations are stable. We will start discussing
the behavior of the model at vanishing values of x. In this limit, the parti-
tion sum is dominated by the contributions coming from interactions
between charges separated by a distance x. For the case h=0 we have Z
pairs in this situation. We may then rewrite the partition function as

Q||=C
Nc

i=1
D
Z−1

j=1
yuijj z

;Zk=1 vikk
0 D

l ] m
zvilmlm , (15)
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where z0=zkk=exp(−t/x) vanishes as xQ 0. Now let us call

v=min
i
vi=min

i
C
Z

k=1
vikk, (16)

and let us suppose that the first N1 of the Nc condensed counterion con-
figurations correspond to this value of vi. Thus

Q||=z
v
0W||(1+P), (17)

where

W||=C
N1

i=1
D
Z−1

j=1
yuijj D

l ] m
zvilmlm ,

and

P=
1
W||

C
Nc

i=N1+1
zvi −v0 D

Z−1

j=1
yuijj D

l ] m
zvilmlm

vanishes as xQ 0, since vi > v. The N1 configurations considered here are
the ones that maximize the number of (−1, −1+a) pairs separated by a
distance x, and thus v=Z−2na=−Za. For the parallel configuration, we
thus have that at small values of x, the partition function is asymptotically
given by

Q|| %W||z
−Za
0 . (18)

A simple combinatorial calculation leads to

N1=
Z!

(n!)2 (Z−2n)!
. (19)

The same line of reasoning may be applied to the perpendicular case,
where only the pair of central charges ([Z+1]/2, 1) and ([Z+1]/2, 2) is
separated by a distance x. One, therefore, has in this case

Q+ %W+ z
1−a
0 , (20)

with

W+=C
N2

i=1
D
Z−1

j=1
yuijj D

(l, m) ] ([Z+1]/2, [Z+1]/2)
zvilmlm , (21)
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where the first N2 configurations are now supposed to be the ones with a
central (0, 1) pair, and

N2=
[(Z−1)!]2

(Z−n)! (Z−n−1)! n! (n−1)!
. (22)

From Eqs. (18) and (20), Q||=Q+ at low distances leads to

a=a0+a1x+O(x2), (23)

with

a0=
Z−2n
Z(2n−1)

, (24)

a1=
2n

Zt(2n−1)
(lnW+ − lnW||). (25)

It is thus apparent that the sign of the inclination of the curve j||=j+ in
the (a, x) plane at x=0 is determined by the sign ofW+ −W||, since ln(x) is
a monotonically increasing function.

In Fig. 3 the curve of equal free energies in the plane (a, x), separating
the stable parallel and perpendicular configurations, is shown for the case
Z=9, n=2. For all temperatures, the curves meet at (a0=5/27, x=0), as
expected. For the case of the ground state (vanishing temperature), the
curve displays discontinuous derivatives at points where the configurations
of the ground state change. Another point which is worth observing is that

Fig. 3. Curves of equal free energies (j||=j+ ) for the model with Z=9, n=2, for t=1
(——), t=2 (– – –) and tQ. ( · · · · ). The parallel configuration is stable on the right hand
side of the curves. Inset shows the reentrant behavior found for some values of t and short
distances.
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Fig. 4. Inclination of the curves of equal free energies at x=0, da/dx=a1, as a function of
t for some cases (Z, n). From top to bottom: (13, 4), (9, 3), (11, 3), (13, 3), (9, 2), (11, 2).

for t > 1.489528... or t < 0.288876... the curve starts with negative inclination
at (a0, 0). Thus, for a value of a somewhat smaller than a0 the perpendicular
configuration is stable at large and small distances, while parallel rods are
stable at intermediate distances. Thus, in this case we find that the perpen-
dicular phase is reentrant as the distance x is lowered. Figure 4 shows the
initial inclination a1=(

“a
“x)x=0 as a function of t for some examples. As is

apparent in expression 25, these inclinations diverge as tQ 0, their sign in
this limit being determined by W+ −W||. As a general rule, one notices that
reentrant behavior is found for relatively small values of n in the examples
that we have studied (n < 3 for Z=7, 9, 11 and n < 4 for Z=13).

Finally, we discuss the behavior of the force defined in E. (8). As a
general rule, for sufficiently large values of a, the force is repulsive at large
distances and becomes attractive as the distance is lowered. It is useful to
find the value of the distance x for which the forces f|| and f+ vanish. The
behavior of these curves at small distances may be found from the asymp-
totic behavior of the free energies described in Eqs. (18) and (20). We find

f|| % h||x−
Za
x2
, (26)

where

1
tW||

“W||
“x
=h||x+O(x2).

Thus, for small values of x, the curve f||=0 reads

x % 1Za
h||
21/3, (27)
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so that attractive forces in the parallel configuration are possible only if
a > 0, since h|| > 0. This means that a minimum number, n=Z/2a, of
condensed counterions is necessary to produce attraction. (9) For the per-
pendicular configuration, similar considerations lead to

f+ % h+x−
a−1
x2
, (28)

and therefore the curve f+=0 for x° 1 is given by

x % 1a−1
h+
21/3. (29)

For small separations between the rods, the curve f+=0, in the (a, x)
plane, tends to a=a+=−1+2n/Z. In Fig. 5 the curves f||=0, f+=0,
and j||=j+ are depicted for a particular case. One notices that, for a > a0,
the force between the rods is attractive for sufficiently small distances x and
the rods are in the parallel configuration. For a+ < a < a0 the force is still
attractive at small x, but the rods are in the perpendicular configuration.

The behavior of the force as a function of the distance x, for a=0.2, is
shown in Fig. 6. At x=1 the force is repulsive and the rods are perpendi-
cular. As the distance is lowered, the force becomes attractive, with the
rods still in the perpendicular configuration. At x=0.246924... the rods
change to parallel configuration and the attractive force becomes much
larger. At small distances, the force displays an asymptotic behavior of
the form −Za/x2, according to Eq. (26). A different behavior is found

Fig. 5. Curves of equal free energies (——), f||=0 ( · · · · ), and f+=0 (– – –), for the model
with Z=9, n=4, and t=1. Note that bellow the solid curve the parallel configuration has
the lowest free energy, while above, the perpendicular configuration is energetically favored.
The parallel configuration has an attractive force between the polyions bellow the dotted line.
Similarly perpendicular configuration is attractive bellow the dashed line.
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Fig. 6. Force as a function of the distance between rods for Z=9, n=4, a=0.2 and t=1.
The full line corresponds to perpendicular rods and the dashed line to parallel rods.

for a=0.75. In this case the force is repulsive at large distances and the
rods are perpendicular. As the distance is lowered, the force changes dis-
continuously to attractive and the rods become parallel. Notice that for this
value there is no stable perpendicular attractive configuration.

Finally, an example of the behavior of the force as a function of the
temperature 1/t may be seen in Fig. 7. For the values of the parameters
used to obtain these data, the parallel configuration is stable. In general,
the modulus of the force increases as the temperature is lowered, since the
charge correlations grow in this case. However, at relatively low tempera-
tures and short separations between the polyions, this rule may not apply,
as is the case in the example shown. The reason for this is that the ground
state configuration, which corresponds to the lowest electrostatic energy, is
not, in general, the configuration which maximizes the attractive force. For
low temperatures and short distances there are configurations which have

Fig. 7. Force as a function of 1/t for Z=9, n=4, a=0.6, and x=0.5 – notice the non-
monotonic variation of the force. For Z=9 and n=2, 3 a purely monotonic decrease of the
modulus of the force as the function temperature is found.
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forces more attractive than those found for the ground state. The total
force, being a weighted mean of forces associated with all configurations
can, therefore, become more attractive than the force at T=0.

4. DISCUSSION AND CONCLUSIONS

To get a better understanding of the range of electrostatic correlatio-
nal forces involved, we study a simple example of two parallel long
polyions with Z/2 condensed divalent counterions. In the ground state the
counterions are distributed periodically along the polyions. At finite tem-
perature, this periodicity will be destroyed, the correlations between the
condensed counterions, however, will persist. Thus, for sufficiently large
electrostatic coupling, i.e., Manning parameter, the electrostatic potential
at position (r, s) from a polyion can be approximated as,

f(r, s)=q C
.

n=−.

(−1)n

`r2+(s−nb)2
. (30)

Appealing to Poisson sum rule the asymptotic large distance behavior or
this sum can be evaluated yielding

f(r, s)=
4q

`2rb
exp 1 −pr

b
2 cos 1ps

b
2 . (31)

The electrostatic energy of interaction between two staggered lines of
charge is then

E=−
4qZ

`2rb
exp 1 −pr

b
2 (32)

and the force, F=−“E/“r, is

F
Z
=−

4q

`2rb3
exp 1 −pr

b
21p+ b

2r
2 (33)

We see that the correlation induced attraction decays exponentially, with
the characteristic range of l=b/p.

We have studied the electrostatic interaction between two charged
roads with a layer of condensed counterions. This is the simplest model of
interaction for like charged polyions in a polyelectrolyte solutions. It is
shown that in spite of the equal net charge on the two macromolecules the
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correlations between the condensed counterions can produce an effective
attraction. We show, however, that this attraction is of extremely short
range, comparable to the monomer separation along the macromolecules.
Furthermore, it is found that at large distances the monopolar repulsion
between the charge densities forces the polyions into a perpendicular con-
figuration. At short distances the correlations between the condensed
counterions can become sufficient to produce a macromolecular alignment.
The energy barrier associated with the transition from the perpendicular to
the parallel configuration might be relevant for the kinematics of bundle
formation in solutions of stiff polyelectrolytes. (14) We should mention,
however, that a line of charge model considered in this work is a strong
idealization of real polyions. Thus, the reentrant behavior as well as the
non-monotonic variation of force with temperature might be an artifact of
not considering the finite radius of the polyions. (15) We hope to address
these issues in our future work.
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